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The Austrian high-tech company TTTech Computertechnik AG is technology 
leader in robust networked safety controls. TTTech products are applied 
in various safety-relevant areas in the space and aerospace domains, 
energy production, railway systems and industrial process automation.

The subsidiary TTTech Automotive GmbH provides solutions for the challenges 
of future vehicle generations. Currently, the company is developing an 
innovative domain ECU for serial production in the automotive industry, 
intended for Advanced Driver Assistance Systems (ADAS). More than 30 
different ADAS-functions can be integrated and monitored on this platform, by 
means of different high performance multicore processors and a corresponding 
middleware. Even applications with different safety levels – up to ASIL D after 
ISO 26262 – can be integrated easily and cost-efficiently and run simultaneously 
on the in-house developed software TTIntegration. Deterministic Ethernet 
serves as the on-board network, providing bandwidth of up to 1 Gbps. This 
future-proof ECU solution is being expanded to a whole model family.

Additionally, TTTech Automotive offers modular hardware and software solutions, 
based on safety-certified modules as well as effective system solutions, e.g. 
for electric drives or dynamic stability control systems. Reliable logging tools 
for bus systems like FlexRay, MOST and CAN complete the offering.

Taking the Right Turn with 

Safe and Modular Solutions

High Performance Domain ECUs for 
Advanced Driver Assistance Systems
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Introduction
Modern cars offer an ever increasing num-
ber of electronic functions in all vehicle do-
mains, such as Advanced Driver Assistance 
Systems (ADAS), infotainment systems, 
vehicle dynamics systems and hybrid and 
electric drivetrains. In the past, each new 
customer function required yet another 
electronic control unit (ECU). Due to costs, 
packaging, wiring and thermal constraints, 
this is not a suitable solution anymore. To-
day and even more so in the future, we can 
observe a trend toward the modularization 
of automotive electronic systems and the 
implementation of new customer functions 
controlled by software only, thus effectively 
reducing the number of ECUs or at least 
not increasing it further. 

In parallel to those technically mandated 
changes, we can also observe a change 
of supply chain and cooperation models. 
Instead of sourcing a complete closed-box 
system (including sensors, ECUs and pos-
sibly actuators from a single tier-1 supplier), 
original equipment manufacturers (OEMs) 
increasingly turn to a more open “cherry 
picking” model. This means that OEMs se-
lect the best-in-class elements (sensors and 
sensor processing software, ECU hardware 
and platform SW, application SW modules, 
actuators) separately from a number of tier-1 
and SW suppliers and integrate the complete 

system on their own or in a network of partner 
companies. This approach by the OEMs is 
driven by their need for differentiation, which 
also results in increasing in-house develop-
ment of customer functions by the OEMs.

All these trends lead to the emergence of 
central domain ECUs on the basis of plat-
form architectures. For example, in the ADAS 
domain, the requirement for central sensor 
fusion quite naturally leads to a central fu-
sion and application controller architecture. 
Generic platforms are needed to foster func-
tion SW reuse across different car models, 
which in turn is necessary to cope with the 
immense costs and efforts for function vali-
dation especially in the ADAS domain.

Due to a changed cooperation model and the 
dramatically increased technical complexity, 
not only the new role of the SW integrator 
emerges in this scenario, but also the re-
quirements for the domain ECU architecture, 
the SW platform and the integration process 
differ from traditional ECUs very much. In the 
following sections, we discuss the require-
ments for such domain ECU architectures, 
with a particular focus on ADAS systems. 
We present a novel solution that is currently 
employed in full series development with a 
variety of partners. ■
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Requirements for 

ADAS Domain ECUs

Figure 1 gives an abstract view of a high-end 
ADAS system, which, e.g., is needed in au-
tonomous driving scenarios. 
A set of diverse sensory inputs, such as ra-
dar, cameras, LIDAR and ultrasonic sensors, 
are processed to identify elementary pieces 
of information about the environment of a car 
(lanes, traffic signs, people, other cars, etc.). 
These pieces of information are fed into a 
central fusion layer to compute a complete 

and consistent representation of the sur-
rounding of the car and the trajectories of 
all objects. The application layer builds upon 
that fused information, devises the driving 
strategy and implements the navigation and 
control algorithms to drive the vehicle, by 
controlling steering, braking and the drive-
train. Besides this core function of autono-
mous driving control, a variety of additional 
comfort and utility functions will usually be 
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Figure 1: Abstract View of a High-End ADAS System
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hosted by a central ADAS controller, ranging 
from customer functions (such as Automated 
Emergency Braking (AEB), lane assistance 
and surround view) to vehicle utility func-
tions, such as event logging and black-box 
data recording functionalities.

The SW functions hosted by a central con-
troller will depend on the overall vehicle 
architecture of the OEMs. The architecture 
might include raw data sensor processing 
or, alternatively, rely on object data received 
from “smart sensors” that are attached to the 
central controller. In any case, at least the 
sensor fusion layer plus all the application 
and utility functions must be integrated. As 
this task is complex and as most architec-
ture considerations are also relevant for this 
“simpler” case, we will not cover the specific 
system architecture in further detail.

The requirements for the HW and SW archi-
tecture of an ADAS domain controller come 
from many sources (performance, safety, 
application SW development, and integration 
process), mastering the technical complexity, 
as well as modularity and scalability needs 
in order to support different vehicle options. 
Similar requirements have been present 
in the aerospace industry for a long time, 
leading to the well-established architecture 
of (Distributed) Integrated Modular Avion-
ics (DIMA). The approach presented in 
this paper is, thus, derived from DIMA and 
adapted to the specific requirements set by 
the automotive domain in terms of costs, 
functionality and scalability. 

Performance: The highest possible process-
ing power is a natural requirement in the 
ADAS domain, given that there is an ► 
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immense computational demand for sen-
sor processing, sensor fusion and vehicle 
control. Depending on the overall system 
architecture, there might be a need for im-
age processing devices (such as graphics 
processing units, GPU) alongside gener-
al-purpose processing devices with a high 
performance. The latter devices come as 
multicore System-on-Chip (SoC) designs 
based on ARM A53 or A57 cores, for exam-
ple. Devices used in the consumer and info-
tainment worlds are on the forefront when it 
comes to a high-integration and performance/
power ratio and, thus, must be included.

Safety: ADAS domain controllers will need 
to conform to ISO 26262 ASIL C/D in or-
der to support autonomous driving func-
tions. This overall safety requirement can 
currently not be met by high-end SoCs, 
and is, therefore, usually broken down by 
means of ASIL decomposition1  and clever 
SW partitioning. For this reason, an ADAS 
domain controller will usually incorporate 
at least one ASIL D-capable automotive 
microcontroller in parallel to high-end SoC 
devices that have lesser safety capabilities. 
Safety capabilities on the HW side must be 
supplemented by platform-SW mechanisms 
(memory partitioning, timing supervision, 
protection of communication between ap-
plications, HW diagnostics and supervision) 
to fully support the applications. 

Interfaces: ADAS domain controllers usu-
ally require a set of traditional automotive 
network interfaces (CAN, FlexRay™, 
LIN®) in addition to Ethernet and, possi-

bly, raw-data video interfaces (LVDS, CSI) 
in order to connect sensors. Along with 
CAN or FlexRay™, usually utility func-
tions – such as diagnostics, calibration and 
security features – need to be supported, 
which can be properly addressed by us-
ing an AUTOSAR® Basic SW. High-end 
SoCs might not offer those interfaces and 
services and need to be supplemented by 
a traditional automotive microcontroller. 

ECU Modularity and Scalability: To support 
vehicle options, a domain controller will need 
to come in several variants, from a top-line 
system to basic functions. SW reuse across 
all the variants is mandatory in order not 
to end up in developing separate ECU SW 
packages for each variant. It is essential to 
abstract the underlying HW, operating sys-
tems and communication mechanisms. The 
application SW components (SWCs) must 
be completely independent of the under-
lying platform implementation, which must 
not contain any ad hoc application-specific 
elements. Under this condition, we can add 
or omit processing elements (as required 

ASIL decomposition means that a 
higher automotive safety integrity level 
(ASIL) can be achieved by appropriate-
ly combining elements that have lower 
levels. For example: Two elements 
which each fulfill ASIL B requirements 
can result in an ASIL C-capable 
or ASIL D-capable system.

1
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by performance and safety demands for the 
different ECU variants) and still freely reuse 
and move SWCs between processors, thus 
drastically decreasing SW development and 
validation efforts.

Development Process: In a rapid prototyp-
ing scenario, application SW in the ADAS 
domain is initially often developed with 
modelling tools, such as ADTF or MATLAB®/
Simulink. It is highly desirable to support a 
seamless transition from such PC-based 
development to an industrialized imple-
mentation on the target ECU by ensuring 
continuous usability of test cases across all 
development phases and ideally identical 
code to run on a PC or on the target. Mixed 
configurations – PC-based SWCs integrated 
with target-based SWCs – must be possible 
in a Software in the Loop (SIL) setup.

SW Integration Process: HW and SW plat-
form architectures must allow the controlled 
integration of a large number of SWCs that 
can come from many different teams. Con-
trolled means that the SW integrator (be it an 
OEM or a third party) must not be overload-
ed with debugging, mediation and conflict 
resolution tasks among SWC suppliers. We 
want to avoid a scenario where single SWCs 
work just fine, but the completely integrated 
system does not because of timing interac-
tion and resource conflicts that could lead 
to an endless procedure of iterations and 
incremental fixes. So we need composability: 
Individually tested SWCs must immediately 

work, once integrated together. This also 
means that predictability is a key require-
ment with regard to resource consumption, 
runtime, data flow latencies and sequences 
of SWCs. Finally, a black-box integration 
approach (no source code, anonymized in-
terfaces) is desirable to support IP protection 
among potentially competing SWC suppliers.

Mastering Complexity: A high-end central 
ADAS controller might have approached the 
complexity of complete vehicle electronics 
just a few years ago. A clean SW architec-
ture and the abstraction of HW and operating 
systems must provide the required modular-
ity, portability and simplicity of interfaces for 
the SWCs. So, what is not just a matter of 
comfort, but a question of feasibility is ob-
servability of all ECU-internal communication 
through appropriate debugging utilities (of 
course without influencing system timing, as 
are available at vehicle level through data 
logging and tracing), and the above-men-
tioned requirements for the SW integration 
properties without mutual side effects. 

All of these requirements apply not only to an 
“open” cooperation scenario where an OEM 
specifies, sources and integrates a complete 
system that comes from contributions of 
a variety of suppliers, but also to the more 
“closed” environment of a single tier-1 sys-
tem supplier integrating a complex domain 
ECU together with a multitude of in-house 
teams and, possibly, OEM contributions. ■
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HW and SW 

Architecture Overview

As shown in Figure 2, the architecture consists 
of a diverse set of processing elements: an 
automotive microcontroller (such as Infineon 
Aurix or Renesas RH850), a general-purpose 
processing engine that is based on a field 
programmable gate array (FPGA, e.g., 
Altera Cyclone V), an image processing de-

vice (such as Nvidia or Renesas R-Car H3), 
and further specialized sensory processing 
devices. All the devices are interconnected 
by a Deterministic Ethernet (DE) switch, and 
there are no direct point-to-point connec-
tions that hinder the debugging and tracing 
of intra-ECU communication, which would 
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Figure 2: Abstract Block Diagram of ECU HW Architecture
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clearly be a showstopper for the integra-
tion and debugging of the highly complex 
interaction between a multitude of SWCs2. 
CAN and FlexRay™ provide external in-
terfaces to the traditional car network, with 
Ethernet connecting high-end car networks 
and serving as a debugging interface.

The Deterministic Ethernet (DE) switch can 
be integrated in an FPGA or included as 
a standard off-the-shelf device (e.g., the 
NXP SJA1105T chip). Besides the normal 
best-effort Ethernet switching capability, 
the DE switch provides a time-triggered, 
deterministic mode of operation where all 
communication and switching takes place 
according to a predefined schedule in a 
completely predictable way (similar to the 
FlexRay™ mode of communication). All 
processing elements are synchronized to 
the switch and schedule their internal task 
processing accordingly. Thus, the DE switch 
provides the central heartbeat of the ECU 
and ensures deterministic, collision-free and 
jitter-free communication among the SWCs 
on the processing hosts. The DE switch, 
thus, is the core element to ensure the 
above-mentioned composability and deter-
ministic integration property.

Note: The processing elements just use their 
standard, integrated Ethernet MAC devices 
and need no special HW precautions. How-
ever, there are SW enhancements at driver 
and operating system (OS) level to support 
synchronized communication.

Safety is implemented by ASIL decomposition 
across the devices, with the automotive mi-
crocontroller providing the ASIL D capability, 
the FPGA fulfilling up to ASIL B requirements, 
and the GPU being used for QM-rated algo-
rithms. All the devices provide memory pro-
tection and ensure the associated freedom 
from interference to support mixed-criticality 
operation. End-to-end communication 
protection is applied to all safety-relevant 
inter-SWC (intra-ECU) communication. ►

2
A possible exception might be direct, 
specialized point-to-point connec-
tions between devices to share raw 
sensory data. However, this has no 
impact on the communication and 
integration of SWCs and is, therefore, 
not covered here in further detail.
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•	 The automotive microcontroller uses 
AUTOSAR® Basic SW and OS. This 
contains the proven SW stacks for ve-
hicle communication interfaces and ba-
sic SW services, as well as commonly 
used automotive functions (diagnostics, 
calibration). This choice ensures com-
pliance to OEM vehicle networks and 
operation requirements, and also allows 
the easy integration of OEM-specific util-
ity and legacy functions, such as special 
in-house security protocols.

•	 VxWorks by Wind River is used 
as a safety-enabled OS for the 
general-purpose SoC (FPGA), where 
safety-relevant applications up to ASIL B 
need to be run, but their performance 
demands exceed the automotive mi-
crocontroller’s specifications. Besides 
the safety capability, VxWorks offers a 
wealth of proven functionalities and ser-
vices, and POSIX® compliance.
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Figure 3: High-Level SW Architecture Overview

Operating systems (OS) are selected according to a best-fit approach:
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•	 Linux is the natural choice for 
non-safety-related processing elements 
on high-end SoCs (GPUs), in particular, 
as it offers easy, often out-of-the-box 
integration of graphics processing 
libraries, such as OpenCL, OpenCV, 
CUDA and similar services.

This selection is quite natural, taking into 
account the different processing elements, 
but leading to a very heterogeneous OS 
solution. Without any additional measures, 
the applications will find a completely differ-
ent operating environment and API on each 
host, which strongly ties each application SW 
component to a predefined host. Additionally, 
basic mechanisms, such as communication 
and data management, are not compatible 

with different operating systems. Without 
further precautions, the applications would 
need to implement proprietary ad hoc mech-
anisms and adaption layers, which would be 
very likely to mash up platform functionalities 
with application code.

Our solution to providing a common execution 
environment and API on all the hosts and to 
ensuring HW and OS abstraction is to place 
a generic middleware layer on top of each 
OS and include an AUTOSAR® runtime envi-
ronment (RTE) type of communication. This 
RTE layer plus a broad set of utility functions 
form the generic middleware on all the hosts. 
This offers one common, host-independent 
API to the SWCs and achieves full HW and 
OS abstraction, providing complete location 
transparency, which means that all services 
are available on all hosts transparently. This 
also ensures full portability of SWCs. They 
may be flexibly located to processing ele-
ments according to their requirements for 
performance, memory and safety. If these re-
quirements should change, it is also possible 
to move SWCs freely between processing 
cores and hosts or optimize the utilization of 
processing power and memory of the ECU. 
For the SW integrator, this simply amounts to 
a configuration step at compile time, without 
any code change of the SWC!

To achieve the deterministic integration 
property with its benefits (predictability, no 
integration side effects), the time-triggered  
mode of operation is also ► 
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implemented in the middleware, by means of  
OS-specific enhancements for synchroniza-
tion and task scheduling/dispatching. 

Finally, the middleware layer is also 
extended to the PC environment, allowing 
seamless SIL interaction (co-simulation) 
among applications on the PC and the 
target ECU and bridging the gap between 
rapid-prototyping and industrialized SW 
components, while keeping all timing rela-
tions fully intact, and without any necessary 
code change on the part of the SWCs.

To sum up, there are two key elements used 
to fulfill all the requirements for performance, 
safety, development and integration process-
es, as well as modularity and scalability: 

•	 A deterministic architecture exploit-
ing the time-triggered paradigm for 
(ECU-internal) network communication 
and task scheduling.

•	 A common, generic middleware layer 
abstracting the diversity of the underlying 
microcontrollers and operating systems.
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It should be pointed out that this approach 
is completely scalable, as processing hosts 
may be added for different ECU variants or 
car models without having an impact on the 
overall architecture and allowing the com-
plete reuse of SWCs across those variants. 
The same architecture can even be used in a 
distributed way at vehicle level, e.g., by using 
OABR Ethernet interfaces between ECUs. It 
is also remarkable that all the core elements 
build upon well-established and standard-

ized technologies (such as AUTOSAR®, 
POSIX®) and time-triggered communica-
tion, as defined in SAE AS6802 and the 
current TSN (Time-Sensitive Networking) 
activities within IEEE. ■
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This section will give a more detailed over-
view of middleware functionalities, their us-
age and benefits.

Communication: As mentioned above, the 
communication paradigm implemented by 
TTTech is based on an AUTOSAR® RTE, 
with ultimately all internal signals mapped 
to Ethernet communication. The communi-
cation paradigm uses off-the-shelf Ethernet 
communication stacks provided by the OS 
suppliers, even though there are some spe-
cific enhancements to incorporate the deter-
ministic, time-triggered approach. The SW 
integrator generates the communication lay-
er at compile time, on the basis of signal in-
formation provided by the OEM and the SWC 
suppliers. All communication is made avail-
able to the outside world via the Deterministic 
Ethernet switch, thus giving total transparen-
cy for debugging and function performance 
analysis (e.g., inputs and outputs of the 
fusion layer can be made accessible without 
having any timing impact on the system). 
A benefit of the time-triggered approach is 
that throughput and latencies are known in 
advance and do not vary depending on SWC 
behavior. This also allows the off-loading of 
SWCs to a PC via Ethernet (co-simulation) 

for prototyping or debugging purposes, while 
keeping all timing relations intact.

Synchronization and Time-Triggered Task 
Scheduling: As is the case for communica-
tion, all major task activation is done in a de-
terministic way on the basis of a predefined 
schedule. Violating SWCs that do not comply 
with their runtime restrictions are controlled 
and deferred. In some situations, this ap-
proach may seem too strict. Therefore, 
additional flexibility is built in. SWCs may 
utilize other processing slots which are not 
fully used by the respective SWCs assigned 
to these slots, and SWCs can (dynamically) 
adjust their operation at runtime to the time 
remaining in their scheduled slot. There are 
special API functions to enable both function-
alities, which can mainly be used by functions 
that do not have a hard computational target. 
A fusion layer, for example, might adjust the 
number and granularity of identified objects 
depending on the available runtime.  

Safety: The middleware along with the un-
derlying OS and HW mechanisms is con-
ceptually implemented as a Safety Element 
out of Context (SEooC) in the sense of the 
ISO 26262, essentially providing a safe ► 

Middleware Functions 

and Benefits
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execution environment for each SWC and 
a safe communication channel for other 
SWCs. Generic safety mechanisms, such 
as memory protection, timing supervision 
and end-to-end communication protection 
between SWCs on the same host and to re-
mote hosts are derived from the established 
AUTOSAR® mechanisms, and adapted and 
extended to non-AUTOSAR® environments 
by making use of functionalities that are 
provided by the respective operating sys-
tems and their host processors. Additional 
host-specific (HW depending) diagnostics 
and supervision functions, such as clock, 
power supply, memory and μC core monitor-
ing are implemented as necessary.

Storage and Data Management: Non-volatile 
and volatile memory is made available to the 
SWCs on each host in a location-transpar-
ent manner. This means that data written by 
an SWC on one host is transparently made 
available to all the other SWCs on all hosts. 
Generic API functions as a part of the mid-
dleware ensure storage, protection, data 
transport and retrieval across the ECU. This 
is again an essential feature to provide com-
plete portability and location transparency of 
application SWCs. In fact, the SWCs are not 
even aware of where data is actually stored 
– and do not need to care. This includes ap-
plications running on a PC (SIL scenario).

TTTech Process Flow for  
Time-Triggered Architecture
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Figure 4: Platform Configuration Workflow
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Diagnostics, Calibration, Flashing: These utili-
ty functions are implemented in a master/slave 
approach. The AUTOSAR®-based microcon-
troller acts as a master, controls the other 
processing elements (slaves) and presents 
the whole ECU as one homogenous entity to 
the outside world. There is no need for a spe-
cial diagnostics or calibration tool to cope with 
the internal diversity and complexity of the 
domain ECU. OEM and SWC suppliers can 
just keep their existing tools and workflow.

SW Development Support: There is a full 
set of debugging and profiling tools that 
have mostly been derived from the specific 
OSs but were enhanced by generic mech-
anisms (e.g., data logging). The PC-based 
co-simulation environment can not only be 
used as a convenient way to integrate, un-
der ADTF or MATLAB®/Simulink, prototyped 
SWCs with SWCs running on the target 
ECU. Identical C source code can be run 
on a PC and on the target ECU without any 
timing-related impact, as the time-triggered 
mode of operation abstracts the usually much 
higher performance of the PC. Therefore, 
rich PC-based debug facilities may be used 
even for fully industrialized components, 
which would only offer very limited access to 
debugging and tracing facilities in a tradition-
al workflow (on the embedded target).

Most of the middleware, in particular com-
munication, is generated by a set of highly 
integrated tools and scripts. The communica-
tion matrix and various additional information 
from OEM and SWC suppliers (in particular, 
resource budgets, latency constraints, and 
data flow constraints) serve as main inputs 
for a complete platform build. Tools from 
classic AUTOSAR® Basic SW (BSW) ven-
dors and OS suppliers are fully integrated to 
configure their respective components. ■

AUTOSAR Configuration

- Schedule Tables
- Watchdog

Non-AUTOSAR Configuration

- Task Schedule

Network Configuration

- Device Configuration
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SWC Development and 

Integration Workflow
In a traditional, ad hoc integration workflow, 
the respective suppliers deliver all the SWCs. 
The SW integrator builds a binary flash im-
age for each host and loads it into the sys-
tem. Resource constraints (processing time, 
memory, communication bandwidth) are 
hopefully aligned before, but initially rarely 
met by the SWC suppliers. As a result, SW in-
tegrators find themselves in a situation where 
total resource consumption almost for sure 
is out of limits, thus causing conflicts among 
SWCs. Overall functionality and stability will 
depend on the specific inputs: Even though 
simple environmental scenes might be treat-
ed smoothly, complex scenes will bring the 
system beyond its limits, leading to spurious 
faults and inconsistencies. A lot of mediation 
by the SW integrator and refinements by the 
SWC suppliers will be required to iteratively 
bring the system to a stable state. And what 
is worse: Once the system is working, even 
minor changes by one of the SWC suppliers 
can destabilize the complete system again. 
This is a nightmare not just for the SW inte-
grator, but also for the OEM verification and 
validation tasks at vehicle level.

Our architecture avoids this scenario al-
together and provides a stable, controlled 
process from individually tested SWCs to 
a completely integrated system. The de-

terministic, time-triggered scheduling of all 
communication and task activation provides 
the technical basis. This approach might 
seem rigid at first, but in essence just en-
sures the constraints that have to be even-
tually met anyway. So we are dealing with 
a conscious design step of strict resource 
planning and scheduling to achieve over-
all system composability with the added 
benefit that all timing behavior is known a 
priori. Thanks to our approach, even data 
flow latencies are known precisely and in 
advance, which in a traditional workflow 
would have to be measured a posteriori or 
investigated by simulation, but would still be 
prone to variability and jitter.

The actual SW integration workflow is 
carried out in three phases per SW release 
(see Figure 5), which may be triggered by 
OEM-defined SW integration steps and based 
on a functional feature release plan that is 
synchronized among the SWC suppliers.

1. Platform Release: The SW integrator con-
figures and builds the platform SW, including 
all BSW, OSs and middleware and releases it 
to the SWC suppliers. Resource boundaries 
(timing, memory) are predefined and aligned 
for each SWC and implemented through an 
appropriate task and communication sched-
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ule. All SWCs are “stubbed”, i.e., replaced by 
empty templates and dummy functions.

2. (Single) SWC Integration: The SWC 
supplier integrates the application on the 
platform by replacing the stubs and can test 
the SWC within its predefined boundaries, 
in exactly the same environment and with 
exactly the same timing as on the final inte-
grated system. The tested SWCs along with 
the used test cases are delivered to the SW 
integrator for the system release.

3. System Release: The SW integrator 
integrates all SWCs and delivers the com-

Phase 1: Software Release

plete build to the OEM and to the SWC 
suppliers for vehicle or test bench inte-
gration. All the SWCs will run exactly as 
in the single SWC setup (step 2), all test 
vectors are reused and results remain valid. 
The whole system is immediately stable, 
without any further measures.

Actually there is also a step 0 that provides 
a so-called SIL release – an initial PC-based 
environment for SWC development that is 
independent of the target. ►
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Phase 2: (Single) SWC Integration

Phase 3: System Release
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At step 3, SWCs are checked if they fulfill 
their resource boundaries before integration 
(“acceptance test”) and possibly rejected if 
they do not3. The system may not be in a ful-
ly working state if other SWCs depend on the 
violator, but at least this is known in advance 
and corrective measures can be taken. In a 
traditional architecture and workflow, such vi-
olations might at first go unnoticed with sim-
ple scenes and low computational demand 
and, thus, lead to an unstable system state 
later, for example, when it comes to complex 
environmental scenes, which is a situation 
much worse to deal with.

Each supplier can use the system release 
as a basis for further feature development 
and improvement, by incremental builds to 
upgrade their own SWC, as long as it obeys 
the defined boundaries.

The particular benefits and results of this con-
trolled integration process (and the HW/SW 
architecture and middleware approach en-
abling it) can be summarized as follows:

•	 A running system without timing 
or memory collisions from SWCs 
is generated in one predictable, 
well-defined integration process.

•	 The actual runtime requirements of all 
the SWCs are known and collected in 
an integration report.

•	 The actual data flow latencies and 
sequences of SWC activations are 
known and collected in an integra-
tion report (these figures are actually 
known already after the first step – 
scheduling/platform release). 

•	 Data flow latencies and all timing re-
lations are not only known exactly, but 
fixed. There is no variability or jitter, which 
drastically reduces the amount of appli-
cation testing and application validation.

•	 Side-effects from SWCs, such as the 
blocking of other SWCs, are avoided. ■

3
In an ideal world, this should not 
happen. However, to expedite 
SWC development in early project 
phases, strict timing checks might 
still be turned off because not all 
SWCs are available yet and spare 
time budget might be implicitly 
released to the existing SWCs.
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Experiences From  

Series Development
The above-mentioned HW architecture was 
implemented in a real series project with 
a very low impact on ECU costs. The only 
additional device needed, besides the various 
processing engines, was the Deterministic 
Ethernet switch, which was integrated in an 
FPGA, whose processing capabilities and 
interface flexibility would have been needed 
anyway. An alternative is NXP’s SJA1105T.

The ECU was implemented in several 
variants to support different option packages, 
ranging from automatic emergency braking 
only to autonomous driving functions. Due to 

the HW and OS abstracting properties of the 
middleware, SWCs are not aware on which 
variant they are running and may even be 
located on different hosts for different ECU 
variants. In addition, SWC suppliers do not 
have to spend any extra effort to support 
several ECU variants.

The SW Integration process was smoothly 
carried out by a surprisingly small team. 
The SWC suppliers quickly adapted to 
the new process, because it was clearly 
defined and straightforward, thus giving 
SWC suppliers a well-defined development 

 24
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and integration platform with a multitude 
of useful features and relieving them from 
most of the housekeeping functions required 
in a traditional setup. SWC suppliers can 
simply focus on implementing the required 
algorithms, with the required basis being 
delivered by the platform and middleware. 
The necessary precautions (estimating 
resource consumptions of the SWCs and 
aligning resource constraints system-
wide in advance) are needed in any series 
development and thus do not cause any 
additional effort.

The capability to move SWCs among 
different processing hosts without any code 
change is used quite frequently, especially as 
continuous refining, learning and optimizing 
over the SW integration steps reveal too 

optimistic initial resource estimates for some 
SWCs, which are offset by too pessimistic 
estimates for other SWCs, thus leading to 
changes in the allocation of SWCs over the 
course of the project.

Currently, more than 30 applications from 
more than 10 suppliers are integrated, 
ranging from sensory processing, various 
sensor fusion components to a multitude 
of customer functions, such as automated 
parking control and automated driving. It 
is our firm conviction that this project, with 
its extreme technical and organizational 
complexity, would probably not have 
succeeded without the implementation 
of a deterministic architecture, generic 
middleware and a strict integration process.■

 25
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Conclusion
This paper presented a new architecture 
and a new integration approach to 
highly-integrated domain ECUs, which is 
currently being successfully implemented 
in the series development of a complex 
central ADAS controller that contains a 
diverse set of processing units, ranging 
from traditional automotive microcontrollers 
to high-end graphics engines. Two key 
elements enhance the architecture to fulfill 
all requirements set on performance, safety, 
ECU modularity and scalability, and the 
development and integration process:

•	 A deterministic HW and SW architecture, 
including a Deterministic Ethernet switch, 
exploits the time-triggered paradigm 
for ECU-internal communication 
and task scheduling, thus enabling 
predictable timing behavior of 
application SW components and fully 
integrated systems.

•	 A common, generic AUTOSAR® 
RTE-based middleware layer abstracts 
the diversity of the underlying 
microcontrollers and operating systems 
for the application SW components.

This architectural basis is implemented with 
an exhaustive feature set of debugging and 
utility functions. It ensures full portability and 
location transparency for the application 
SW components and, therefore, full 
flexibility with respect to SWC allocation 
and system partitioning.

The integration process enabled by the 
deterministic, time-triggered paradigm 
guarantees full predictability and 
composability and ensures smooth SW 
integration without iterative, time-consuming 
and costly integration hassle of 
traditional ad hoc approaches. ■
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