
www.tttech.com/ADAS

Learn More
About TTTech’s
ADAS Solutions

Deterministic
Architecture and
Middleware for
Domain Control
Units and Simplified
Integration Process
Applied to ADAS

Dr. Georg Niedrist

www.tttech.com/ADAS

Learn More
About TTTech’s
ADAS Solutions

Imprint

TTTech Automotive GmbH
Schoenbrunner Strasse 7
1040 Vienna, Austria

office@tttech-automotive.com
Phone: +43 1 585 65 38-5000

FN 165 664z, Commercial Court Vienna

Printed by Paco Medienwerkstatt, Vienna

All trademarks are the property of their respective owners.

www.tttech-automotive.com

Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

ConclusionIntroduction

The Austrian high-tech company TTTech Computertechnik AG is technology
leader in robust networked safety controls. TTTech products are applied
in various safety-relevant areas in the space and aerospace domains,
energy production, railway systems and industrial process automation.

The subsidiary TTTech Automotive GmbH provides solutions for the challenges
of future vehicle generations. Currently, the company is developing an
innovative domain ECU for serial production in the automotive industry,
intended for Advanced Driver Assistance Systems (ADAS). More than 30
different ADAS-functions can be integrated and monitored on this platform, by
means of different high performance multicore processors and a corresponding
middleware. Even applications with different safety levels – up to ASIL D after
ISO 26262 – can be integrated easily and cost-efficiently and run simultaneously
on the in-house developed software TTIntegration. Deterministic Ethernet
serves as the on-board network, providing bandwidth of up to 1 Gbps. This
future-proof ECU solution is being expanded to a whole model family.

Additionally, TTTech Automotive offers modular hardware and software solutions,
based on safety-certified modules as well as effective system solutions, e.g.
for electric drives or dynamic stability control systems. Reliable logging tools
for bus systems like FlexRay, MOST and CAN complete the offering.

Taking the Right Turn with

Safe and Modular Solutions

High Performance Domain ECUs for
Advanced Driver Assistance Systems

 4

Headline Lorem Ipsum

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 5

Introduction
Modern cars offer an ever increasing num-
ber of electronic functions in all vehicle do-
mains, such as Advanced Driver Assistance
Systems (ADAS), infotainment systems,
vehicle dynamics systems and hybrid and
electric drivetrains. In the past, each new
customer function required yet another
electronic control unit (ECU). Due to costs,
packaging, wiring and thermal constraints,
this is not a suitable solution anymore. To-
day and even more so in the future, we can
observe a trend toward the modularization
of automotive electronic systems and the
implementation of new customer functions
controlled by software only, thus effectively
reducing the number of ECUs or at least
not increasing it further.

In parallel to those technically mandated
changes, we can also observe a change
of supply chain and cooperation models.
Instead of sourcing a complete closed-box
system (including sensors, ECUs and pos-
sibly actuators from a single tier-1 supplier),
original equipment manufacturers (OEMs)
increasingly turn to a more open “cherry
picking” model. This means that OEMs se-
lect the best-in-class elements (sensors and
sensor processing software, ECU hardware
and platform SW, application SW modules,
actuators) separately from a number of tier-1
and SW suppliers and integrate the complete

system on their own or in a network of partner
companies. This approach by the OEMs is
driven by their need for differentiation, which
also results in increasing in-house develop-
ment of customer functions by the OEMs.

All these trends lead to the emergence of
central domain ECUs on the basis of plat-
form architectures. For example, in the ADAS
domain, the requirement for central sensor
fusion quite naturally leads to a central fu-
sion and application controller architecture.
Generic platforms are needed to foster func-
tion SW reuse across different car models,
which in turn is necessary to cope with the
immense costs and efforts for function vali-
dation especially in the ADAS domain.

Due to a changed cooperation model and the
dramatically increased technical complexity,
not only the new role of the SW integrator
emerges in this scenario, but also the re-
quirements for the domain ECU architecture,
the SW platform and the integration process
differ from traditional ECUs very much. In the
following sections, we discuss the require-
ments for such domain ECU architectures,
with a particular focus on ADAS systems.
We present a novel solution that is currently
employed in full series development with a
variety of partners. ■

 6

Requirements for

ADAS Domain ECUs

Figure 1 gives an abstract view of a high-end
ADAS system, which, e.g., is needed in au-
tonomous driving scenarios.
A set of diverse sensory inputs, such as ra-
dar, cameras, LIDAR and ultrasonic sensors,
are processed to identify elementary pieces
of information about the environment of a car
(lanes, traffic signs, people, other cars, etc.).
These pieces of information are fed into a
central fusion layer to compute a complete

and consistent representation of the sur-
rounding of the car and the trajectories of
all objects. The application layer builds upon
that fused information, devises the driving
strategy and implements the navigation and
control algorithms to drive the vehicle, by
controlling steering, braking and the drive-
train. Besides this core function of autono-
mous driving control, a variety of additional
comfort and utility functions will usually be

Sensors Preprocessing Fusion Application Actuators

Power
Train

Brake

Steering

Drive
Pilot

Emergency
Breaking

Lane
Assistance

Function X

Map
Fusion

Object
Fusion

eHorizon

...

Front Camera

Area View

Radar

Laser

Ultrasonic,
Nano Radar

Figure 1: Abstract View of a High-End ADAS System

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 7

hosted by a central ADAS controller, ranging
from customer functions (such as Automated
Emergency Braking (AEB), lane assistance
and surround view) to vehicle utility func-
tions, such as event logging and black-box
data recording functionalities.

The SW functions hosted by a central con-
troller will depend on the overall vehicle
architecture of the OEMs. The architecture
might include raw data sensor processing
or, alternatively, rely on object data received
from “smart sensors” that are attached to the
central controller. In any case, at least the
sensor fusion layer plus all the application
and utility functions must be integrated. As
this task is complex and as most architec-
ture considerations are also relevant for this
“simpler” case, we will not cover the specific
system architecture in further detail.

The requirements for the HW and SW archi-
tecture of an ADAS domain controller come
from many sources (performance, safety,
application SW development, and integration
process), mastering the technical complexity,
as well as modularity and scalability needs
in order to support different vehicle options.
Similar requirements have been present
in the aerospace industry for a long time,
leading to the well-established architecture
of (Distributed) Integrated Modular Avion-
ics (DIMA). The approach presented in
this paper is, thus, derived from DIMA and
adapted to the specific requirements set by
the automotive domain in terms of costs,
functionality and scalability.

Performance: The highest possible process-
ing power is a natural requirement in the
ADAS domain, given that there is an ►

 7

 8

immense computational demand for sen-
sor processing, sensor fusion and vehicle
control. Depending on the overall system
architecture, there might be a need for im-
age processing devices (such as graphics
processing units, GPU) alongside gener-
al-purpose processing devices with a high
performance. The latter devices come as
multicore System-on-Chip (SoC) designs
based on ARM A53 or A57 cores, for exam-
ple. Devices used in the consumer and info-
tainment worlds are on the forefront when it
comes to a high-integration and performance/
power ratio and, thus, must be included.

Safety: ADAS domain controllers will need
to conform to ISO 26262 ASIL C/D in or-
der to support autonomous driving func-
tions. This overall safety requirement can
currently not be met by high-end SoCs,
and is, therefore, usually broken down by
means of ASIL decomposition1 and clever
SW partitioning. For this reason, an ADAS
domain controller will usually incorporate
at least one ASIL D-capable automotive
microcontroller in parallel to high-end SoC
devices that have lesser safety capabilities.
Safety capabilities on the HW side must be
supplemented by platform-SW mechanisms
(memory partitioning, timing supervision,
protection of communication between ap-
plications, HW diagnostics and supervision)
to fully support the applications.

Interfaces: ADAS domain controllers usu-
ally require a set of traditional automotive
network interfaces (CAN, FlexRay™,
LIN®) in addition to Ethernet and, possi-

bly, raw-data video interfaces (LVDS, CSI)
in order to connect sensors. Along with
CAN or FlexRay™, usually utility func-
tions – such as diagnostics, calibration and
security features – need to be supported,
which can be properly addressed by us-
ing an AUTOSAR® Basic SW. High-end
SoCs might not offer those interfaces and
services and need to be supplemented by
a traditional automotive microcontroller.

ECU Modularity and Scalability: To support
vehicle options, a domain controller will need
to come in several variants, from a top-line
system to basic functions. SW reuse across
all the variants is mandatory in order not
to end up in developing separate ECU SW
packages for each variant. It is essential to
abstract the underlying HW, operating sys-
tems and communication mechanisms. The
application SW components (SWCs) must
be completely independent of the under-
lying platform implementation, which must
not contain any ad hoc application-specific
elements. Under this condition, we can add
or omit processing elements (as required

ASIL decomposition means that a
higher automotive safety integrity level
(ASIL) can be achieved by appropriate-
ly combining elements that have lower
levels. For example: Two elements
which each fulfill ASIL B requirements
can result in an ASIL C-capable
or ASIL D-capable system.

1

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 9

by performance and safety demands for the
different ECU variants) and still freely reuse
and move SWCs between processors, thus
drastically decreasing SW development and
validation efforts.

Development Process: In a rapid prototyp-
ing scenario, application SW in the ADAS
domain is initially often developed with
modelling tools, such as ADTF or MATLAB®/
Simulink. It is highly desirable to support a
seamless transition from such PC-based
development to an industrialized imple-
mentation on the target ECU by ensuring
continuous usability of test cases across all
development phases and ideally identical
code to run on a PC or on the target. Mixed
configurations – PC-based SWCs integrated
with target-based SWCs – must be possible
in a Software in the Loop (SIL) setup.

SW Integration Process: HW and SW plat-
form architectures must allow the controlled
integration of a large number of SWCs that
can come from many different teams. Con-
trolled means that the SW integrator (be it an
OEM or a third party) must not be overload-
ed with debugging, mediation and conflict
resolution tasks among SWC suppliers. We
want to avoid a scenario where single SWCs
work just fine, but the completely integrated
system does not because of timing interac-
tion and resource conflicts that could lead
to an endless procedure of iterations and
incremental fixes. So we need composability:
Individually tested SWCs must immediately

work, once integrated together. This also
means that predictability is a key require-
ment with regard to resource consumption,
runtime, data flow latencies and sequences
of SWCs. Finally, a black-box integration
approach (no source code, anonymized in-
terfaces) is desirable to support IP protection
among potentially competing SWC suppliers.

Mastering Complexity: A high-end central
ADAS controller might have approached the
complexity of complete vehicle electronics
just a few years ago. A clean SW architec-
ture and the abstraction of HW and operating
systems must provide the required modular-
ity, portability and simplicity of interfaces for
the SWCs. So, what is not just a matter of
comfort, but a question of feasibility is ob-
servability of all ECU-internal communication
through appropriate debugging utilities (of
course without influencing system timing, as
are available at vehicle level through data
logging and tracing), and the above-men-
tioned requirements for the SW integration
properties without mutual side effects.

All of these requirements apply not only to an
“open” cooperation scenario where an OEM
specifies, sources and integrates a complete
system that comes from contributions of
a variety of suppliers, but also to the more
“closed” environment of a single tier-1 sys-
tem supplier integrating a complex domain
ECU together with a multitude of in-house
teams and, possibly, OEM contributions. ■

 10

HW and SW

Architecture Overview

As shown in Figure 2, the architecture consists
of a diverse set of processing elements: an
automotive microcontroller (such as Infineon
Aurix or Renesas RH850), a general-purpose
processing engine that is based on a field
programmable gate array (FPGA, e.g.,
Altera Cyclone V), an image processing de-

vice (such as Nvidia or Renesas R-Car H3),
and further specialized sensory processing
devices. All the devices are interconnected
by a Deterministic Ethernet (DE) switch, and
there are no direct point-to-point connec-
tions that hinder the debugging and tracing
of intra-ECU communication, which would

ADAS Domain Controller

Automotive
µC

High-End
General Purpose

µC

Image
Processing

Sensor
Processing

Deterministic
Ethernet SwitchFR C

A
N

Fl
ex

R
ay

C
A

N

E
th

er
ne

t

E
th

er
ne

t

Figure 2: Abstract Block Diagram of ECU HW Architecture

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 11

clearly be a showstopper for the integra-
tion and debugging of the highly complex
interaction between a multitude of SWCs2.
CAN and FlexRay™ provide external in-
terfaces to the traditional car network, with
Ethernet connecting high-end car networks
and serving as a debugging interface.

The Deterministic Ethernet (DE) switch can
be integrated in an FPGA or included as
a standard off-the-shelf device (e.g., the
NXP SJA1105T chip). Besides the normal
best-effort Ethernet switching capability,
the DE switch provides a time-triggered,
deterministic mode of operation where all
communication and switching takes place
according to a predefined schedule in a
completely predictable way (similar to the
FlexRay™ mode of communication). All
processing elements are synchronized to
the switch and schedule their internal task
processing accordingly. Thus, the DE switch
provides the central heartbeat of the ECU
and ensures deterministic, collision-free and
jitter-free communication among the SWCs
on the processing hosts. The DE switch,
thus, is the core element to ensure the
above-mentioned composability and deter-
ministic integration property.

Note: The processing elements just use their
standard, integrated Ethernet MAC devices
and need no special HW precautions. How-
ever, there are SW enhancements at driver
and operating system (OS) level to support
synchronized communication.

Safety is implemented by ASIL decomposition
across the devices, with the automotive mi-
crocontroller providing the ASIL D capability,
the FPGA fulfilling up to ASIL B requirements,
and the GPU being used for QM-rated algo-
rithms. All the devices provide memory pro-
tection and ensure the associated freedom
from interference to support mixed-criticality
operation. End-to-end communication
protection is applied to all safety-relevant
inter-SWC (intra-ECU) communication. ►

2
A possible exception might be direct,
specialized point-to-point connec-
tions between devices to share raw
sensory data. However, this has no
impact on the communication and
integration of SWCs and is, therefore,
not covered here in further detail.

 12

•	 The automotive microcontroller uses
AUTOSAR® Basic SW and OS. This
contains the proven SW stacks for ve-
hicle communication interfaces and ba-
sic SW services, as well as commonly
used automotive functions (diagnostics,
calibration). This choice ensures com-
pliance to OEM vehicle networks and
operation requirements, and also allows
the easy integration of OEM-specific util-
ity and legacy functions, such as special
in-house security protocols.

•	 VxWorks by Wind River is used
as a safety-enabled OS for the
general-purpose SoC (FPGA), where
safety-relevant applications up to ASIL B
need to be run, but their performance
demands exceed the automotive mi-
crocontroller’s specifications. Besides
the safety capability, VxWorks offers a
wealth of proven functionalities and ser-
vices, and POSIX® compliance.

Deterministic Ethernet

Middleware Middleware

MCALMCAL

RTERTE RTE

AUTOSAR OS
BSW

VxWorks

General Purpose µCAutomotive µC

S
W

C
 1

S
W

C
 2

S
W

C
 3

S
W

C
 n

S
W

C
 k

Figure 3: High-Level SW Architecture Overview

Operating systems (OS) are selected according to a best-fit approach:

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 13

•	 Linux is the natural choice for
non-safety-related processing elements
on high-end SoCs (GPUs), in particular,
as it offers easy, often out-of-the-box
integration of graphics processing
libraries, such as OpenCL, OpenCV,
CUDA and similar services.

This selection is quite natural, taking into
account the different processing elements,
but leading to a very heterogeneous OS
solution. Without any additional measures,
the applications will find a completely differ-
ent operating environment and API on each
host, which strongly ties each application SW
component to a predefined host. Additionally,
basic mechanisms, such as communication
and data management, are not compatible

with different operating systems. Without
further precautions, the applications would
need to implement proprietary ad hoc mech-
anisms and adaption layers, which would be
very likely to mash up platform functionalities
with application code.

Our solution to providing a common execution
environment and API on all the hosts and to
ensuring HW and OS abstraction is to place
a generic middleware layer on top of each
OS and include an AUTOSAR® runtime envi-
ronment (RTE) type of communication. This
RTE layer plus a broad set of utility functions
form the generic middleware on all the hosts.
This offers one common, host-independent
API to the SWCs and achieves full HW and
OS abstraction, providing complete location
transparency, which means that all services
are available on all hosts transparently. This
also ensures full portability of SWCs. They
may be flexibly located to processing ele-
ments according to their requirements for
performance, memory and safety. If these re-
quirements should change, it is also possible
to move SWCs freely between processing
cores and hosts or optimize the utilization of
processing power and memory of the ECU.
For the SW integrator, this simply amounts to
a configuration step at compile time, without
any code change of the SWC!

To achieve the deterministic integration
property with its benefits (predictability, no
integration side effects), the time-triggered
mode of operation is also ►

Middleware

MCAL

RTE

Linux

GPU

S
W

C
 l

 14

implemented in the middleware, by means of
OS-specific enhancements for synchroniza-
tion and task scheduling/dispatching.

Finally, the middleware layer is also
extended to the PC environment, allowing
seamless SIL interaction (co-simulation)
among applications on the PC and the
target ECU and bridging the gap between
rapid-prototyping and industrialized SW
components, while keeping all timing rela-
tions fully intact, and without any necessary
code change on the part of the SWCs.

To sum up, there are two key elements used
to fulfill all the requirements for performance,
safety, development and integration process-
es, as well as modularity and scalability:

•	 A deterministic architecture exploit-
ing the time-triggered paradigm for
(ECU-internal) network communication
and task scheduling.

•	 A common, generic middleware layer
abstracting the diversity of the underlying
microcontrollers and operating systems.

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 15

It should be pointed out that this approach
is completely scalable, as processing hosts
may be added for different ECU variants or
car models without having an impact on the
overall architecture and allowing the com-
plete reuse of SWCs across those variants.
The same architecture can even be used in a
distributed way at vehicle level, e.g., by using
OABR Ethernet interfaces between ECUs. It
is also remarkable that all the core elements
build upon well-established and standard-

ized technologies (such as AUTOSAR®,
POSIX®) and time-triggered communica-
tion, as defined in SAE AS6802 and the
current TSN (Time-Sensitive Networking)
activities within IEEE. ■

 16

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 17

This section will give a more detailed over-
view of middleware functionalities, their us-
age and benefits.

Communication: As mentioned above, the
communication paradigm implemented by
TTTech is based on an AUTOSAR® RTE,
with ultimately all internal signals mapped
to Ethernet communication. The communi-
cation paradigm uses off-the-shelf Ethernet
communication stacks provided by the OS
suppliers, even though there are some spe-
cific enhancements to incorporate the deter-
ministic, time-triggered approach. The SW
integrator generates the communication lay-
er at compile time, on the basis of signal in-
formation provided by the OEM and the SWC
suppliers. All communication is made avail-
able to the outside world via the Deterministic
Ethernet switch, thus giving total transparen-
cy for debugging and function performance
analysis (e.g., inputs and outputs of the
fusion layer can be made accessible without
having any timing impact on the system).
A benefit of the time-triggered approach is
that throughput and latencies are known in
advance and do not vary depending on SWC
behavior. This also allows the off-loading of
SWCs to a PC via Ethernet (co-simulation)

for prototyping or debugging purposes, while
keeping all timing relations intact.

Synchronization and Time-Triggered Task
Scheduling: As is the case for communica-
tion, all major task activation is done in a de-
terministic way on the basis of a predefined
schedule. Violating SWCs that do not comply
with their runtime restrictions are controlled
and deferred. In some situations, this ap-
proach may seem too strict. Therefore,
additional flexibility is built in. SWCs may
utilize other processing slots which are not
fully used by the respective SWCs assigned
to these slots, and SWCs can (dynamically)
adjust their operation at runtime to the time
remaining in their scheduled slot. There are
special API functions to enable both function-
alities, which can mainly be used by functions
that do not have a hard computational target.
A fusion layer, for example, might adjust the
number and granularity of identified objects
depending on the available runtime.

Safety: The middleware along with the un-
derlying OS and HW mechanisms is con-
ceptually implemented as a Safety Element
out of Context (SEooC) in the sense of the
ISO 26262, essentially providing a safe ►

Middleware Functions

and Benefits

 18

execution environment for each SWC and
a safe communication channel for other
SWCs. Generic safety mechanisms, such
as memory protection, timing supervision
and end-to-end communication protection
between SWCs on the same host and to re-
mote hosts are derived from the established
AUTOSAR® mechanisms, and adapted and
extended to non-AUTOSAR® environments
by making use of functionalities that are
provided by the respective operating sys-
tems and their host processors. Additional
host-specific (HW depending) diagnostics
and supervision functions, such as clock,
power supply, memory and μC core monitor-
ing are implemented as necessary.

Storage and Data Management: Non-volatile
and volatile memory is made available to the
SWCs on each host in a location-transpar-
ent manner. This means that data written by
an SWC on one host is transparently made
available to all the other SWCs on all hosts.
Generic API functions as a part of the mid-
dleware ensure storage, protection, data
transport and retrieval across the ECU. This
is again an essential feature to provide com-
plete portability and location transparency of
application SWCs. In fact, the SWCs are not
even aware of where data is actually stored
– and do not need to care. This includes ap-
plications running on a PC (SIL scenario).

TTTech Process Flow for
Time-Triggered Architecture

EcuC

Characteristics

Processor Constrains

System Constrains

Middleware
Configurator

Task Scheduler

Network Scheduler

•	 SW-C
•	 Runnables
•	 Signals

•	 WCET
•	 Period

•	 Background Tasks
•	 IRQ-Load
•	 Context Switch

•	 Path Delay
•	 Switch Delay
•	 Event Chains

•	 Supporting Various Operating Systems
•	 Supporting Incremental Scheduling

Figure 4: Platform Configuration Workflow

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 19

Diagnostics, Calibration, Flashing: These utili-
ty functions are implemented in a master/slave
approach. The AUTOSAR®-based microcon-
troller acts as a master, controls the other
processing elements (slaves) and presents
the whole ECU as one homogenous entity to
the outside world. There is no need for a spe-
cial diagnostics or calibration tool to cope with
the internal diversity and complexity of the
domain ECU. OEM and SWC suppliers can
just keep their existing tools and workflow.

SW Development Support: There is a full
set of debugging and profiling tools that
have mostly been derived from the specific
OSs but were enhanced by generic mech-
anisms (e.g., data logging). The PC-based
co-simulation environment can not only be
used as a convenient way to integrate, un-
der ADTF or MATLAB®/Simulink, prototyped
SWCs with SWCs running on the target
ECU. Identical C source code can be run
on a PC and on the target ECU without any
timing-related impact, as the time-triggered
mode of operation abstracts the usually much
higher performance of the PC. Therefore,
rich PC-based debug facilities may be used
even for fully industrialized components,
which would only offer very limited access to
debugging and tracing facilities in a tradition-
al workflow (on the embedded target).

Most of the middleware, in particular com-
munication, is generated by a set of highly
integrated tools and scripts. The communica-
tion matrix and various additional information
from OEM and SWC suppliers (in particular,
resource budgets, latency constraints, and
data flow constraints) serve as main inputs
for a complete platform build. Tools from
classic AUTOSAR® Basic SW (BSW) ven-
dors and OS suppliers are fully integrated to
configure their respective components. ■

AUTOSAR Configuration

- Schedule Tables
- Watchdog

Non-AUTOSAR Configuration

- Task Schedule

Network Configuration

- Device Configuration

 20

SWC Development and

Integration Workflow
In a traditional, ad hoc integration workflow,
the respective suppliers deliver all the SWCs.
The SW integrator builds a binary flash im-
age for each host and loads it into the sys-
tem. Resource constraints (processing time,
memory, communication bandwidth) are
hopefully aligned before, but initially rarely
met by the SWC suppliers. As a result, SW in-
tegrators find themselves in a situation where
total resource consumption almost for sure
is out of limits, thus causing conflicts among
SWCs. Overall functionality and stability will
depend on the specific inputs: Even though
simple environmental scenes might be treat-
ed smoothly, complex scenes will bring the
system beyond its limits, leading to spurious
faults and inconsistencies. A lot of mediation
by the SW integrator and refinements by the
SWC suppliers will be required to iteratively
bring the system to a stable state. And what
is worse: Once the system is working, even
minor changes by one of the SWC suppliers
can destabilize the complete system again.
This is a nightmare not just for the SW inte-
grator, but also for the OEM verification and
validation tasks at vehicle level.

Our architecture avoids this scenario al-
together and provides a stable, controlled
process from individually tested SWCs to
a completely integrated system. The de-

terministic, time-triggered scheduling of all
communication and task activation provides
the technical basis. This approach might
seem rigid at first, but in essence just en-
sures the constraints that have to be even-
tually met anyway. So we are dealing with
a conscious design step of strict resource
planning and scheduling to achieve over-
all system composability with the added
benefit that all timing behavior is known a
priori. Thanks to our approach, even data
flow latencies are known precisely and in
advance, which in a traditional workflow
would have to be measured a posteriori or
investigated by simulation, but would still be
prone to variability and jitter.

The actual SW integration workflow is
carried out in three phases per SW release
(see Figure 5), which may be triggered by
OEM-defined SW integration steps and based
on a functional feature release plan that is
synchronized among the SWC suppliers.

1. Platform Release: The SW integrator con-
figures and builds the platform SW, including
all BSW, OSs and middleware and releases it
to the SWC suppliers. Resource boundaries
(timing, memory) are predefined and aligned
for each SWC and implemented through an
appropriate task and communication sched-

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 21

ule. All SWCs are “stubbed”, i.e., replaced by
empty templates and dummy functions.

2. (Single) SWC Integration: The SWC
supplier integrates the application on the
platform by replacing the stubs and can test
the SWC within its predefined boundaries,
in exactly the same environment and with
exactly the same timing as on the final inte-
grated system. The tested SWCs along with
the used test cases are delivered to the SW
integrator for the system release.

3. System Release: The SW integrator
integrates all SWCs and delivers the com-

Phase 1: Software Release

plete build to the OEM and to the SWC
suppliers for vehicle or test bench inte-
gration. All the SWCs will run exactly as
in the single SWC setup (step 2), all test
vectors are reused and results remain valid.
The whole system is immediately stable,
without any further measures.

Actually there is also a step 0 that provides
a so-called SIL release – an initial PC-based
environment for SWC development that is
independent of the target. ►

Middleware

Deterministic Ethernet Backbone

Fr
am

ew
or

k
To

ol
s

OS OS OS OS

Core 1/2/3
SoC

Core 1/2/3/4
SoC

Core 1/2
SoC

Core 1/2
SoC

Figure 5: Software Integration Process

Integration

 22

Phase 2: (Single) SWC Integration

Phase 3: System Release

Middleware

Deterministic Ethernet Backbone

Fr
am

ew
or

k
To

ol
s

OS OS OS OS

Core 1/2/3
SoC

Core 1/2/3/4
SoC

Core 1/2
SoC

Core 1/2
SoC

App1
SWC

App2
SWC

App3
SWC

App4
SWC

App5
SWC

App6
SWC

Middleware

Deterministic Ethernet Backbone

Fr
am

ew
or

k
To

ol
s

OS OS OS OS

Core 1/2/3
SoC

Core 1/2/3/4
SoC

Core 1/2
SoC

Core 1/2
SoC

App1
SWC

Integration

Integration

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 23

At step 3, SWCs are checked if they fulfill
their resource boundaries before integration
(“acceptance test”) and possibly rejected if
they do not3. The system may not be in a ful-
ly working state if other SWCs depend on the
violator, but at least this is known in advance
and corrective measures can be taken. In a
traditional architecture and workflow, such vi-
olations might at first go unnoticed with sim-
ple scenes and low computational demand
and, thus, lead to an unstable system state
later, for example, when it comes to complex
environmental scenes, which is a situation
much worse to deal with.

Each supplier can use the system release
as a basis for further feature development
and improvement, by incremental builds to
upgrade their own SWC, as long as it obeys
the defined boundaries.

The particular benefits and results of this con-
trolled integration process (and the HW/SW
architecture and middleware approach en-
abling it) can be summarized as follows:

•	 A running system without timing
or memory collisions from SWCs
is generated in one predictable,
well-defined integration process.

•	 The actual runtime requirements of all
the SWCs are known and collected in
an integration report.

•	 The actual data flow latencies and
sequences of SWC activations are
known and collected in an integra-
tion report (these figures are actually
known already after the first step –
scheduling/platform release).

•	 Data flow latencies and all timing re-
lations are not only known exactly, but
fixed. There is no variability or jitter, which
drastically reduces the amount of appli-
cation testing and application validation.

•	 Side-effects from SWCs, such as the
blocking of other SWCs, are avoided. ■

3
In an ideal world, this should not
happen. However, to expedite
SWC development in early project
phases, strict timing checks might
still be turned off because not all
SWCs are available yet and spare
time budget might be implicitly
released to the existing SWCs.

 24

Experiences From

Series Development
The above-mentioned HW architecture was
implemented in a real series project with
a very low impact on ECU costs. The only
additional device needed, besides the various
processing engines, was the Deterministic
Ethernet switch, which was integrated in an
FPGA, whose processing capabilities and
interface flexibility would have been needed
anyway. An alternative is NXP’s SJA1105T.

The ECU was implemented in several
variants to support different option packages,
ranging from automatic emergency braking
only to autonomous driving functions. Due to

the HW and OS abstracting properties of the
middleware, SWCs are not aware on which
variant they are running and may even be
located on different hosts for different ECU
variants. In addition, SWC suppliers do not
have to spend any extra effort to support
several ECU variants.

The SW Integration process was smoothly
carried out by a surprisingly small team.
The SWC suppliers quickly adapted to
the new process, because it was clearly
defined and straightforward, thus giving
SWC suppliers a well-defined development

 24

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

 25

and integration platform with a multitude
of useful features and relieving them from
most of the housekeeping functions required
in a traditional setup. SWC suppliers can
simply focus on implementing the required
algorithms, with the required basis being
delivered by the platform and middleware.
The necessary precautions (estimating
resource consumptions of the SWCs and
aligning resource constraints system-
wide in advance) are needed in any series
development and thus do not cause any
additional effort.

The capability to move SWCs among
different processing hosts without any code
change is used quite frequently, especially as
continuous refining, learning and optimizing
over the SW integration steps reveal too

optimistic initial resource estimates for some
SWCs, which are offset by too pessimistic
estimates for other SWCs, thus leading to
changes in the allocation of SWCs over the
course of the project.

Currently, more than 30 applications from
more than 10 suppliers are integrated,
ranging from sensory processing, various
sensor fusion components to a multitude
of customer functions, such as automated
parking control and automated driving. It
is our firm conviction that this project, with
its extreme technical and organizational
complexity, would probably not have
succeeded without the implementation
of a deterministic architecture, generic
middleware and a strict integration process.■

 25

 26

Introduction Requirements
for ADAS
Domain ECUs

HW and SW
Architecture
Overview

Middleware
Functions
and Benefits

SWC Development
and Integration
Workflow

Experiences
From Series
Development

Conclusion

Conclusion
This paper presented a new architecture
and a new integration approach to
highly-integrated domain ECUs, which is
currently being successfully implemented
in the series development of a complex
central ADAS controller that contains a
diverse set of processing units, ranging
from traditional automotive microcontrollers
to high-end graphics engines. Two key
elements enhance the architecture to fulfill
all requirements set on performance, safety,
ECU modularity and scalability, and the
development and integration process:

•	 A deterministic HW and SW architecture,
including a Deterministic Ethernet switch,
exploits the time-triggered paradigm
for ECU-internal communication
and task scheduling, thus enabling
predictable timing behavior of
application SW components and fully
integrated systems.

•	 A common, generic AUTOSAR®
RTE-based middleware layer abstracts
the diversity of the underlying
microcontrollers and operating systems
for the application SW components.

This architectural basis is implemented with
an exhaustive feature set of debugging and
utility functions. It ensures full portability and
location transparency for the application
SW components and, therefore, full
flexibility with respect to SWC allocation
and system partitioning.

The integration process enabled by the
deterministic, time-triggered paradigm
guarantees full predictability and
composability and ensures smooth SW
integration without iterative, time-consuming
and costly integration hassle of
traditional ad hoc approaches. ■

Georg Niedrist has steadily gained expertise in the development
and implementation of innovative networking and computing
platform technologies throughout his professional life.

After completing his studies with a doctor’s degree at Technical
University Vienna, he worked for more than ten years at
Siemens AG in Vienna, being responsible for the development
of highly reliable telecommunication switches. Additionally, he
also accompanied customer projects as a project manager.

Since joining TTTech in 2004, Georg Niedrist has been
implementing customer projects in the areas of automotive,
aerospace and off-highway vehicles, thus broadening his
technological experience tremendously while becoming
acquainted with different customer requirements.

In 2008 he started focusing on the automotive area and
became TTTech Automotive’s technical head, in this position
he is responsible for all products and project handling.

Dr. Georg Niedrist
Director Products & Projects at TTTech Automotive GmbH

With TTTech’s high
performance ADAS
platform we are already set
today for all future driver
assistance systems.

“
”

TTTech Automotive GmbH
Schoenbrunner Strasse 7
1040 Vienna, Austria
Tel. + 43 1 585 65 38-5000
Fax + 43 1 585 65 38-5090
products@tttech-automotive.com

Taking the Right Turn
with Safe and Modular
Solutions for the
Automotive Industry

	Umschlag_Seiten
	Umschlag_Seiten
	TTTech-ADAS-Magazin-GNI-Paper-2016
	TTTech-ADAS_Magazine_176x250mm-KERN

	Umschlag_Seiten

